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Abstract
The LAgrangian Transport Eulerian Reaction Spatial (LATERS) Markov model was developed to predict upscaled

bimolecular reactive transport in a flow around an array of solid cylinders. This method combines the stochastic Lagrangian

Spatial Markov model (SMM) to predict transport and a volume averaged reaction rate equation to predict reactions of the

form Aþ B ! ;. Here, we extend the LATERS Markov model to upscale bimolecular reactive transport in a Darcy flow

through an idealized heterogeneous porous medium. In agreement with previous literature, the accuracy of the prediction is

a function of the Damköhler (Da) numbers, i.e., high Da are more challenging because of incomplete mixing. It was found

that a key component which must be incorporated into the upscaled model in these high Da systems is the idea that nearby

A and B particles should be more likely to react than those that are farther apart. This is here achieved by appropriately

reducing the resolution of the spatial grid employed to resolve the reactive process.
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1 Introduction

Flows in the subsurface are complex as they are charac-

terized by heterogeneous geological structures across a

broad range of scales Dentz et al. (2011). This hetero-

geneity has a strong impact on transport, mixing, and

chemical reactions. In real systems, the structure of the

porous medium is in general unknown and difficult to

determine. Even if it were possible to have knowledge of

the full porous media structure, it is not computationally

feasible to model these systems at larger scales of interest

while still incorporating all of the pore scale information

Dentz et al. (2011). This presents the need for upscaled

models that can account for these small scale processes in

an effective manner. Accurate prediction of chemical

reactions in subsurface flows is important, as it has prac-

tical applications in predicting the fate and transport of

contaminants Steefel et al. (2005); Yeh and Tripathi (1989)

and the remediation of contaminated groundwater Mayer

et al. (2006), Knutson et al. (2007), Committee (2013).

To study reactive transport, reactions between two

solutes A and B that react to form a product P will be

considered. Reactions of this form Aþ B ! P have been

shown to be the foundation for more complex reactions

Gillespie (2007). Since the focus of this study is on how the

reactive solutes A and B mix and react with one another,

for simplicity the product of their reaction can be neglec-

ted, i.e. Aþ B ! ;. For a case where A and B are initially

distributed uniformly across the domain, there is a well-

known analytical solution for the reactant concentrations

under perfect mixing given by CA(x,y,t) = CB(x,y,t) = C0/

(1?kC0t), which scales like t�1 at late times. In general,

real systems are not perfectly well-mixed and incomplete

mixing will reduce the amount of reaction that takes place.

For a homogeneous system where mixing occurs only by
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dispersion and A and B are initially well-mixed, this

slowdown in reaction rates has been shown to scale like

t�d=4, where d is the number of spatial dimensions. This

result has been found in theory Kang and Redner (1984),

Ovchinnikov and Zeldovich (1978), Doug and Frank

(1983), numerical simulations Kang and Redner (1984),

Ovchinnikov and Zeldovich (1978), Doug and Frank

(1983), and laboratory experiments Monson and Kopelman

(2000), Monson and Kopelman (2004).

While the case with reactants A and B initially well-

mixed has received a lot of attention (e.g. Kang and Redner

1984; Monson and Kopelman 2000, 2004; Ovchinnikov

and Zeldovich 1978; Paster et al. 2014, 2015; Doug and

Frank 1983; Wright et al. 2017), a setup with A and B

initially separated by a sharp interface is of interest as it has

many real world applications. In this system, a reaction can

only occur within the interface as A and B mix by dis-

persion and advection in the heterogeneous flow. A well-

known experiment examined this setup in a one-dimen-

sional uniform chamber and observed that there was a

significant reduction in the amount of reaction product

relative to the expected values under perfect mixing

Gramling et al. (2002). This observed deviation from the

well-mixed solution was due to the effects of incomplete

mixing and many studies have worked to model the results

of this experiment Edery et al. (2009), Edery et al. (2010),

Sanchez-Vila et al. (2010), Chiogna and Bellin (2013),

Ding et al. (2013), Alhashmi et al. (2015), Ginn (2018). It

is clear from these results that incomplete mixing must be

taken into account in order to accurately model reactive

transport.

Upscaling reactive transport requires accurately

accounting for transport, mixing, and reactions. These

processes are inextricably linked to one another, making

proper upscaling challenging. A variety of upscaled models

have been developed with the goal of capturing the effects

of incomplete mixing (e.g. Sanchez-Vila et al. 2010;

Chiogna and Bellin 2013; Porta et al. 2016; Ginn 2018;

Benson et al. 2019) and a review of many of these methods

can be found in Dentz et al. (2011). These models must

account for subscale concentration fluctuations that limit

reaction. Lagrangian particle tracking methods have been

shown to naturally account for such fluctuations and are

unencumbered by numerical dispersion Benson et al.

(2017), Boso et al. (2013). However, Eulerian methods are

generally more computationally efficient in modeling

chemical reactions relative to Lagrangian reactive transport

models as they eliminate the need to search for nearby

particles available for reaction. In this work, we aim to

extend an existing hybrid reactive transport model that

combines the strengths of both Lagrangian and Eulerian

methods.

The Lagrangian Spatial Markov model (SMM) has been

widely used to upscale mean conservative transport in a

variety of systems, including fractured media Kang et al.

(2011), Kang et al. (2015), Kang et al. (2017), Kang et al.

(2011), Kang et al. (2015), Kang et al. (2016), complex

pore-scale systems Kang et al. (2014), de Anna et al.

(2013), and highly heterogeneous porous media Le Borgne

et al. (2008a), Le Borgne et al. (2008b). In upscaling

bimolecular reactive transport, knowledge of only the mean

transport is insufficient. Information about local concen-

trations must be incorporated as well. The SMM was

recently extended to predict upscaled mixing by develop-

ing several methods to predict particle locations that can be

used to generate concentration fields and quantify mixing

Wright et al. (2019). When modeling bimolecular reactions

between two solutes A and B, it is crucial to not only

appropriately quantify mixing of the reactive solutes

themselves, but to adequately describe how A and B mix

relative to one another.

For considering reactions in addition to conservative

transport, an upscaled Eulerian reactive transport model

was developed by Porta et al. (2012). This method volume

averaged the advection diffusion reaction equation

(ADRE) and developed a closure to account for subscale

fluctuations Porta et al. (2012). While this model was able

to upscale reactive transport and account for incomplete

mixing effects, the closure problem entails nonlocal inte-

gro-differential terms which complicate the numerical

solution of the system and play an important role at pre-

asymptotic times Porta et al. (2016). The LAgrangian

Transport Eulerian Reaction Spatial (LATERS) Markov

model was developed by Sund et al. (2017) to predict

bimolecular reactive transport in a simple two-dimensional

porous medium consisting of a periodic array of solid

cylinders. This method combines the ability of the SMM to

upscale transport with the volume averaged reaction rate

equation of Porta et al. (2012). In this work, we will extend

the LATERS Markov model to upscale reactive transport

in flows through idealized heterogeneous porous media.

2 System setup

We consider reactive transport in a flow through an ide-

alized, two-dimensional heterogeneous porous medium.

The flow field is obtained by first generating a log-normal

random permeability field jðx; yÞ with zero mean and a

variance of r2lnj ¼ 9. The permeability field is generated on

a grid with square grid cells of unit area and has a selected

correlation length k ¼ 2. The variance was chosen to align

with the fields of Le Borgne et al. (2008a), Le Borgne et al.

(2008b), which first introduced the SMM. After generating
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the permeability field, we then calculate our flow field by

solving Darcy’s law with incompressibility

vðxÞ ¼ � jðxÞ
l

rp; r � v ¼ 0; ð1Þ

using a finite volume method Aarnes et al. (2007), where

v(x) is the velocity [LT�1], p is the pressure [ML�1T�2],

and l is the viscosity [ML�1T�1]. We impose a constant

head value at both the upstream and downstream bound-

aries and a no flux condition on the boundaries parallel to

the flow. The flow domain was generated to be large

enough such that the reactive solutes do not interact with

the boundaries throughout our simulations. Domain lengths

of Lx ¼ 4000k and Ly ¼ 1000k in the x and y directions

were acceptable for this purpose. The natural log of the

permeability field and the natural log of the absolute value

of the velocity v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2x þ v2y

q

are shown in Fig. 1. An

advection dominated system is examined here with a Péclet

number equal to Pe ¼ vxk
D ¼ 200, where vx ¼ 1 is the mean

velocity in the horizontal direction of the flow and D ¼
10�2 is the constant dispersion coefficient.While all

parameters here are intentionally presented in dimension-

less format, this Péclet number is representative of a real-

istic system. For example, an aquifer with a mean velocity

of 1e� 5m=s, a correlation length of 2m, and a dispersion

coefficient of 1e� 7m2=s, all physically reasonable num-

bers, will have a Péclet number of 200.

We consider a system with A and B initially separated

by a sharp interface. The reactive solutes A and B are

discretized into a large number of particles N that each

represent some amount of mass of the solute mp. Here,

N ¼ 1e6 is the total number of particles in the system, with

NA ¼ NB ¼ 5e5 particles for each reactive solute. The

reactive solute B is located over a rectangular area from

0:4Lx to 0:4Lx þ 10Lcell in the x direction and from 0:45Ly
to 0:55Ly in the y direction, where Lcell ¼ 24k ¼ 48 is the

Spatial Markov model cell length. The reactive solute A is

located over a rectangular area from 0:4Lx þ 10Lcell to

0:4Lx þ 20Lcell in the x direction and from 0:45Ly to 0:55Ly
in the y direction. Owing to this choice the solute samples a

relevant portion of the domain, being the dimension of area

initially occupied by the solute much larger than the

characteristic correlation length of the conductivity and

velocity fields. The particles are flux weighted over their

initial rectangular area such that larger numbers of particles

are present in higher velocity regions. The initial location

of the reactive solutes A and B are depicted on Fig. 1.

The governing equation for bimolecular reactive trans-

port in this system is the advection dispersion reaction

equation (ADRE)

oCi

ot
¼ Dr2Ci � v � rCi � kCACB i ¼ A;B ð2Þ

where Ci is the reactive solute concentration [mol L�2], D

is the constant local dispersion coefficent [L2T�1], and k is

the reaction rate constant [L2 mol�1T�1]. It should be noted

that we are considering a constant local dispersion coeffi-

cient for both A and B here, but in reality different chemical

species would have different dispersion coefficients. This

choice of dispersion coefficient impacts the overall mixing

in the system and therefore chemical reaction Rolle et al.

(2013). While we make the simplification of keeping the

dispersion coefficient constant for A and B here, this

method could easily be extended to consider unique dis-

persion coefficients for different chemical species and this

is something that should be considered in future works. In

this study, we will model Eq. 2 using a fully resolved

reactive random walk method described in Sect. 3 and

attempt to replicate these results by extending the upscaled

LATERS Markov model to this system.

3 Fully resolved model: Reactive random
walk

In this section, we will describe the fully resolved reactive

random walk method that was first developed by Benson

and Meerschaert (2008) and will be used to evaluate the

upscaled model. We consider a single realization of log-

permeability, i.e. we consider the field to be known and

deterministic. We neglect then parametric uncertainty,

Fig. 1 (a) The natural log of the

permeability field j and (b) the
natural log of the absolute value

of the velocity v =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2x þ v2y

q

,

where vx and vy are the velocity

fields in the horizontal and

vertical flow directions. The red

and blue boxes indicate the

initial locations of the reactive

solutes A and B, respectively
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typically acknowledged by considering ensembles of sta-

tistically equivalent multiple realization of lnj and focus

instead on the quantification of model error introduced by

reduced complexity (or upscaled) approaches. Our analysis

considers the fully resolved simulation of Eq. (2) as ground

truth, against which we will compare the proposed

upscaling approaches, described later in Sect. 4.3. A

summary of the algorithm used for the fully resolved

simulation will be provided here and more detailed infor-

mation can be found in Benson and Meerschaert (2008),

Paster et al. (2013), Paster et al. (2014). In this fully

resolved reactive random walk method, time is discretized

into time steps of size Dt ¼ 0:01. The time step size was

selected following a convergence test.

At each time step in this model, reactions and transport

are simulated in separate steps by operator splitting. We

begin with the reactive step by determining which parti-

cles, if any, will react during the current time step. The

probability of reaction is determined by both the kinetics of

the reaction and the ability of the particles to come into

contact. It is defined as

Preaction ¼ PcollPreactjcoll ð3Þ

where Pcoll is the probability that particles initially sepa-

rated by some distance s will come into contact over the

time step Dt and Preactjcoll is the probability that the parti-

cles will react once they have come into contact. The

probability of collocation is given by

Pcoll ¼
1

8pDDt
e�

s2

8DDt ð4Þ

and the probability of reaction given collocation is defined

as

Preactjcoll ¼ kmpDt; ð5Þ

where k is the reaction rate constant and mp is the particle

mass. To determine which particles will react, we deter-

mine which B particles are within some defined radius of

each A particle. This search radius is selected such that the

probability of reaction for each A particle with any B

particle outside of this radius is less than 10�6, which has

been shown to give acceptable results Paster et al. (2014).

This radius is defined by

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�8DDt log
8pDDtPreact;thr

Preactjcoll

� �

s

ð6Þ

where Preact;thr ¼ 10�6 is a numerical threshold, set to

balance efficiency and accuracy of the algorithm. To make

the particle searching process more computationally effi-

cient, a k-d tree is implemented using the KDTreeSearcher

function in MATLAB to reduce complexity from an OðN2Þ
process to an OðNlogNÞ process. Once we have obtained a

list of B particles that are within the defined search radius

of each A particle, we calculate the probability of reaction

Preaction;i and draw a random number gi �Uð0; 1Þ for each
AB particle pair. If Preaction [ gi for any AB pair, then the

two A and B particles react with one another and are

removed from the system according to the reaction

Aþ B ! ;. If more than one B particle meets the

requirement for reaction with a single A particle, then the

AB pair with the largest value of Preaction;i � gi is selected
for reaction. If no B particle meets the reaction requirement

for a single A particle, then that A particle does not react

during this time step.

Once the reaction component is completed, we move on

to transport. In a single time step, each particle moves

forward in time some amount Dt and moves in space

according to the Langevin equation

xðt þ DtÞ ¼ xðtÞ þ vðtÞDt þ
ffiffiffiffiffiffiffiffiffiffiffi

2DDt
p

n; ð7Þ

where x is the particle’s position vector, v is the particle

velocity determined from the underlying flow fields,

n�Nð0; 1Þ, and
ffiffiffiffiffiffiffiffiffiffiffi

2DDt
p

n represents a random jump due to

dispersion with zero mean and a variance equal to 2DDt.

4 Upscaled model: LATERS Markov model

The LATERS Markov model was developed by Sund et al.

(2017) to predict effective bimolecular reactive transport in

a relatively simple two-dimensional porous medium con-

sisting of flow around an array of solid cylinders. Here, we

aim to extend this work to upscale reactive transport in

more general flows through heterogeneous porous media.

This method is a hybrid Lagrangian-Eulerian model that

combines the stochastic SMM to predict transport and a

volume averaged reaction rate equation to predict reaction.

4.1 Parameterization of the LATERS Markov
model

The LATERS Markov model is parameterized by running

high resolution particle tracking simulations over two

representative cells of the flow of length Lcell ¼ 24k, where
k is the correlation length of the permeability field. This

cell length and the flow field are selected to match Wright

et al. (2019). In our high resolution particle tracking sim-

ulation, we discretize time into small time steps of size

Dt ¼ 0:01 and move the particles by random walk at each

time step according to Eq. 7. As discussed in Sect. 2, our

initial condition is to have flux-weighted A and B particles

initially separated by a sharp interface. If x0ðx; yÞ is the

vector of the initial A and B particle locations, we run the

high resolution particle tracking simulations as the particles
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travel from x0ðx; yÞ to x0ðx; yÞ þ 2Lcell in the x-direction

and record the following information:

• s1 - the time it took for a particle to travel through the

first cell

• s2 - the time it took for a particle to travel through the

second cell

• y0 - the particle’s y position at the inlet of the first cell

• y1 - the particle’s y position at the inlet of the second

cell.

This joint distribution f ðs1; s2; y0; y1Þ is then used to inform

the upscaled model. The original SMM parameterization

only required the joint distribution f ðs1; s2Þ Le Borgne

et al. (2008a), Le Borgne et al. (2008b), but the added

information of y0 and y1 are needed here to predict mixing.

4.2 Lagrangian transport: Spatial Markov model

In each step of the baseline SMM, particles move forward

in time and space according to the Langevin equation

xðnþ1Þ ¼ xðnÞ þ Lcell

tðnþ1Þ ¼ tðnÞ þ sðnþ1Þ n = 0,1,2,...
ð8Þ

where sðnþ1Þ is sampled from the distribution f ðsÞ defined
by

f ðsÞ ¼
f ðs1Þ if n ¼ 0

f ðsðnþ1ÞjsðnÞÞ if n ¼ 1; 2; ::: :

�

ð9Þ

The distribution f ðs1Þ is recorded during the parameteri-

zation step and f ðsðnþ1ÞjsðnÞÞ is approximated using a

transition matrix. The transition matrix is created by first

separating f ðs1Þ into a number of equiprobable bins NT and

recording the cutoff times associated with each bin. Bin 1

corresponds to the particles with the fastest travel times and

Bin NT corresponds to the bin with the slowest travel times.

NT ¼ 20 was selected following a convergence test and is

within the appropriate range of bin numbers determined by

Le Borgne et al. (2011). A particle’s travel time sp is in Bin
i if tc;i � sp\tc;iþ1, where tc;i is the cutoff time for Bin i,

tc;1 ¼ 0, and tc;NTþ1 is greater than the maximum value of

s1 and s2 recorded during the parameterization step. The

transition matrix is then defined as

Ti;j ¼ Pðs2 2 Bin jjs1 2 Bin iÞ � f ðs2js1Þ; ð10Þ

where it is assumed that f ðsðnþ1ÞjsðnÞÞ ¼ f ðs2js1Þ: There-
fore, each block of the transition matrix Ti;j gives the

probability that a particle will have a travel time in Bin

j given that its travel time was in Bin i in the previous step.

From the traditional SMM described above, we know

which cell each particle is in at any time t�, how long it has

been in that cell, and how long it will remain in that cell.

The exact location of the particle within the cell is

unknown. Several downscaling procedures within the

upscaled SMM were developed by Wright et al. (2019) to

predict particle locations at any time t� for the purpose of

quantifying mixing. Here, it is necessary to quantify how

the reactive solutes A and B mix relative to each other in

order to accurately account for reaction. To this end we

employ the downscaling methods that were developed in

Wright et al. (2019) to predict particle locations at specific

times of interest. These particle locations can then be

mapped onto a grid to generate concentration fields for the

purpose of calculating reactions.

4.3 Predicting sub-cell particle locations

Wright et al. (2019) developed several methods to extend

the SMM to predict mixing. The goal of this work was to

develop downscaling procedures within the upscaled SMM

that can select particle locations (x�,y�) at any time t� that

can be used to generate concentration fields able to accu-

rately quantify mixing. These downscaling methods are

briefly summarized here and more details can be found in

Wright et al. (2019).

In each of these downscaling procedures it is known that

at any time t� each particle is located in some Cell nþ 1,

where n is the SMM step number. The downscaled x

locations of the particles are selected within their respec-

tive SMM cells at time t� by assigning to each particle a

mean longitudinal velocity through the cell equal to

vðnþ1Þ ¼ Lcell=sðnþ1Þ, where Lcell is the SMM cell length and

sðnþ1Þ is the particle’s travel time through the cell. We then

assume that each particle moves straight across Cell nþ 1

with a uniform velocity equal to vðnþ1Þ and linearly inter-

polate along this path to determine x�, i.e.

x� ¼ ðt� � tðnÞÞvðnþ1Þ þ xðnÞ: ð11Þ

This is the same choice for predicting x locations as in

Sund et al. (2017).

Four different methods were considered to select the

downscaled particle y locations:

• Method 0

In Method 0, the y� positions of the particles are

selected randomly with uniform probability between the

initial maximum and minimum particle y values, ymax
and ymin. Thus, the y positions predicted by Method 0

are given by

y� ¼ ðymax � yminÞg� þ ymin ð12Þ

where g� 2 Uð0; 1Þ. This choice may be made in a

system where no information is available on probable y

positions or the particle y locations are unimportant.

Stochastic Environmental Research and Risk Assessment (2021) 35:1529–1547 1533

123



This method is illustrated for a particle located in Cell

nþ 1 in Fig. 2a.

• Method 1

The y� locations for Method 1 are selected to be equal

to each particle’s initial y position at all times, i.e.

y� ¼ y0: ð13Þ

This corresponds to the idea that a particle’s initial

position might be its most likely location and may be a

sufficient approximation at all times. An illustration of

this method for a particle located in Cell nþ 1 can be

found in Fig. 2b.

• Method 2

In an effort to simulate a more realistic particle

trajectory, Method 2 involves adding a y-component

to each SMM step, i.e.

xðnþ1Þ ¼ xðnÞ þ Lcell

yðnþ1Þ ¼ yðnÞ þ Dy

tðnþ1Þ ¼ tðnÞ þ sðnþ1Þ n = 0,1,2,...:

ð14Þ

Here, Dy ¼ y0 � y1, where y0 and y1 were measured

during the parameterization step. Each travel time s1
from the model parameterization has a corresponding

Dy value that was measured. The travel times sðnþ1Þ are
selected as usual with the transition matrix by Eq. 9 and

the corresponding Dy values are chosen. The down-

scaled y positions are then determined by linearly

interpolating between yðnÞ and yðnþ1Þ to the location x�,
i.e.

y� ¼ yðnþ1Þ � yðnÞ

Lcell
ðx� � xðnÞÞ þ yðnÞ: ð15Þ

This method is illustrated in Fig. 2c for a particle

located in Cell nþ 1.

• Method 3

In Method 3, the parameterization step is adjusted to

incorporate more information on particle trajectories.

The parameterization step previously recorded the joint

distribution f ðy0; y1; s1; s2Þ; here, it is extended to

measure f ðy0; yt;1; yt;2; :::; yt;Nt
¼ y1; s1; s2Þ, where yt;#

are particle y locations measured at Nt points along each

particle trajectory through the first parameterization

cell. The particle trajectories are separated into a

Fig. 2 Illustrations of the

downscaling procedures

Methods 0, 1, 2, and 3 in a

single SMM cell
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number Nz of equiprobable zones based on their initial y

position y0. Nt ¼ 20 and Nz ¼ 20 were found to be

satisfactory numbers of trajectory points and zones

Wright et al. (2019). Then, a set of possible y values, Yj,

is generated for each zone number j. Yj contains all of

the y values measured along the trajectories of particles

that had y0 in Zone j. Finally, the downscaled y position

is given by

y� ¼ y
ðnþ1Þ
j ; ð16Þ

where y
ðnþ1Þ
j is a y value selected randomly at each

SMM step from the set Yj associated with each parti-

cle’s zone number j. Each particle’s zone number is

selected based on their initial y position, y0, and does

not change for the duration of the simulation. This

method is illustrated in Fig. 2d for a particle located in

Cell nþ 1.

Once the locations of all particles are predicted, they can be

mapped onto a grid to generate the concentration fields of

the reactive solutes A and B that will be used to calculate

the amount of reaction that takes place. The concentration

grid is obtained by discretizing the flow domain into cells

of size lx;C in the streamwise direction and ly;C in the

spanwise direction and calculating the amount of mass (i.e.

the number of particles of mass mp) in each grid cell of area

AC grid ¼ lx;C ly;C.

Our initial condition is to have the reactive solutes A

and B initially separate as indicated on Fig. 1. To deter-

mine which downscaling method developed in Wright

et al. (2019) and summarized in Sect. 4.3 is best suited for

this setup, we calculate the integral of the squared con-

centration for the corresponding conservative setup. That

is, we measure M ¼
R

C2ðx; tÞdx in time for non-reactive

particles at the same initial positions as the A and B par-

ticles. This mixing metric, M, was chosen as it was pre-

viously used to quantify mixing in Wright et al. (2019)

where these downscaling methods were first developed.

Fig. 3 shows M vs. time calculated using each of the

downscaling methods described in Sect. 4.3 and the fully

resolved model. To obtain this calculation, particle loca-

tions are predicted by each of the downscaling methods.

These particle locations are then mapped onto a grid to

generate a concentration field for each method and the

integral of the squared concentration is computed. The

results of the upscaled model calculations are then com-

pared to the results of the fully resolved model. From a

qualitative analysis of Fig. 3, it is clear that Method 1

provides the best estimate of mixing for this setup. For this

reason, this is the method that is selected to predict particle

locations for the present implementation of the LATERS

Markov model. Thus, our particle locations at time t� are

selected by

x� ¼ ðt� � tðnÞÞvðnþ1Þ þ xðnÞ

y� ¼ y0:
ð17Þ

It should be noted that this result for best downscaling

method differs from the results of Wright et al. (2019)

where Method 3 was the most successful. This is due to the

different initial condition used in this setup. A flux-

weighted line injection was considered in Wright et al.

(2019), while particles are flux-weighted here across an

area with a length of 20Lcell and a width of 0.1Ly. Method 3

is unable to prevent particles from crossing paths with one

another, an effect that is amplified in this initial condition

compared to the results with a flux-weighted line injection.

Method 2 overpredicts mixing at all times for the same

reason, but interestingly appears to accurately predict the

rate of change of the mixing metric M in Fig. 3.

4.4 Eulerian reaction: volume averaged reaction
rate equation

In the LATERS Markov model, time is discretized into

steps of size dt. Here, dt = 0.1 ( edt ¼ 2:5 � 10�4) is selected,

which meets the requirement of Sund et al. (2017) that the

time step be at least ten times smaller than the fastest travel

time measured during the model parameterization. Time is

non-dimensionalized here by a dispersion time scale

defined as tD ¼ k2

D, i.e. et ¼ t=tD, where the tilde indicates

the quantity is non-dimensionalized. This upscaled model

time step dt is also ten times larger than the fully resolved

Fig. 3 The integral of the squared concentration M vs. time for the

downscaling methods developed in Wright et al. (2019) for predicting

concentration fields
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model time step Dt ¼ 0:01 (fDt ¼ 2:5 � 10�5). After

obtaining the concentration fields of the reactive solutes by

predicting particle locations at any time t� as described in

the previous section, the next step in the LATERS Markov

model is to calculate how much reaction should occur in

the system during this model step between times t� � dt

and t� and remove the mass of the reactive solutes A and B

accordingly.

If the ADRE given by Eq. 2 is volume averaged, the

reaction term is found to be

rh i ¼ k CAh i CBh i þ C0
AC

0
B

� �� 	

ð18Þ

where the volume average Hh i is defined by

Hh i ¼ 1

Vf

Z

Vf

H dV ; ð19Þ

Vf being the volume of the fluid being averaged. Fluctua-

tions are then defined as

H
0 ¼ H� Hh i: ð20Þ

To compute the volume averaged terms CAh i, CAh i, and
C0
AC

0
B

� �

required for calculating rh i according to Eq. 18,

we must define a reaction grid where each grid cell rep-

resents the averaging volume Vf and has cell lengths of lx;r
in the streamwise direction and ly;r in the spanwise direc-

tion. The area of the reaction volume has a size of Vf ¼
lx;r ly;r in our two-dimensional system. It is a requirement

for these calculations that the reaction grid has a coarser

resolution than the concentration grid and that Ngrid;x ¼
lx;r=lx;C and Ngrid;y ¼ ly;r=ly;C are integers. Thus, each

reaction volume Vf contains a number of concentration grid

cells equal to NC cells ¼ Ngrid;x Ngrid;y. We will consider here

a reaction grid with resolution lx;r ¼ ly;r ¼ Lcell ¼ 24k ¼
48, so that the reaction volume coincides with the upscaled

cell volume. CAh i and CAh i are then calculated in each

reaction volume according to Eq. 19 and the fluctuation

term C0
AC

0
B

� �

is calculated by defining C0
A ¼ CA � CAh i

and C0
B ¼ CB � CBh i according to Eq. 20 and using Eq. 19.

After calculating rh i, the change of concentration due to

reaction within a defined volume Vf is given by

D Cih i ¼ � rh idt i ¼ A;B; ð21Þ

where dt is the time step size. The amount of mass to be

removed from the reaction volume Vf is then

Dm ¼ D Cih iVf : ð22Þ

To determine which particles within a given reaction vol-

ume will react, the probability of reaction is calculated for

both the reactive solutes A and B. This probability of

reaction is given by

Preaction;i ¼
Dm
MVf ;i

i ¼ A;B; ð23Þ

where MVf ;i is the total mass of A or B within the reaction

volume. A random number n�Uð0; 1Þ is then drawn for

each A and B particle within the reaction volume and a

particle will react if Preaction;i [ n. The particles that are

selected for reaction are then removed from the system

according to the reaction Aþ B ! ;.

5 Results

The LATERS Markov model and the fully resolved model

were run for a range of Damköhler numbers equal to Da ¼
0.625, 6.25, and 62.5. The Damköhler number is defined

here with a dispersion time scale and a length scale equal to

the correlation length of the permeability field, i.e.

Da ¼ kC0k
2

D . Low Da indicates that reactions are happening

more slowly relative to mixing by dispersion and behavior

that is nearer to well-mixed is anticipated. In contrast, high

Da corresponds to a system where reactions are happening

more quickly relative to mixing by dispersion and stronger

incomplete mixing effects are expected. As mentioned

previously, we will consider an advection-dominated sys-

tem with a Péclet number of Pe ¼ 200 for all of these Da

numbers under consideration.

The total mass of the reactive solute B in the system

versus time for Da ¼ 0.625, 6.25, and 62.5 is shown in

Fig. 4. It is observed in Fig. 4 that the LATERS Markov

model predicts the total reactant mass in the system very

Fig. 4 The total mass of B in the domain normalized by the total mass

of B in the domain at time = 0, i.e. fMB ¼ MB=MB;0 vs. time for Da ¼
0.625, 6.25, and 62.5. Time is non-dimensionalized by a dispersion

time scale defined as k2

D , where k is the correlation length of the natural
log of the permeability field and D is the constant dispersion

coefficient
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well for Da ¼ 0.625 and 6.25 relative to the fully resolved

model, while the LATERS Markov model overestimates

reaction for Da ¼ 62.5. This indicates that upscaled

LATERS Markov model might not be as successful in

systems where incomplete mixing effects are important at

least with the currently assumed discretization.

To examine this further, we look at the spatial distri-

bution of reactant concentrations. Figs. 5, 6, and 7 show the

volume averaged concentrations of A and B in each reac-

tion cell averaged across the domain in the y-direction

versus x at three different times throughout the simulation

for Da ¼ 0.625, 6.25, and 62.5, respectively. Figs. 5 and 6

show that the LATERS Markov model is doing a good job

of predicting the location of the reactive solutes in the

streamwise direction for both Da ¼ 0.625 and 6.25,

respectively, and demonstrate that the appropriate amount

of reaction is happening in the interface region where the

reactive solutes A and B overlap in these systems. In

contrast, Fig. 7 demonstrates that too much reaction is

occuring in the interface between the solutes A and B for

the Da ¼ 62.5 case, which is consistent with the overpre-

diction of reaction observed in Fig. 4.

To illustrate the system more qualitatively we examine

the locations of the solutes A and B. Figure 8 shows the A

and B particle locations at ~t ¼2.5 in our upscaled LATERS

Markov model and fully resolved simulations for Da ¼
0.625, 6.25, and 62.5. It is important to note here that we

are not trying to exactly replicate the particle locations of

the fully resolved model with our upscaled model, but

instead accurately capture the amount of mixing between

the A and B particles in order to correctly predict reaction.

From Fig. 8, it appears that the A and B particles in the

upscaled model are almost completely depleted by reaction

in the interface region for the Da ¼ 62:5 case, limiting the

ability of A and B particles to further mix and react. This is

consistent with what is observed in Figs. 7 and 8c indicates

that reactions occur too quickly at the interface between the

solutes A and B in the upscaled model for the Da ¼ 62:5

case. Then, after the interface region is depleted by reac-

tion, a slowdown of reactions is observed due to the fact

that A and B particles are more limited in their ability to

come into contact. This result is consistent with Fig. 4,

which shows an over-prediction of reaction in the upscaled

model for Da ¼ 62:5 relative to the fully resolved model.

This is followed by a self-correction: the depletion at the

Fig. 5 g

CAh i and
g

CBh i vs. x at

times ~t = 0.25, 1.25, and 2.5 for

Da ¼ 0:625. The overbar

indicates an average across the

reaction cells in the y-direction
and Hh i indicates a volume

average over a single reaction

cell
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interface causes a slowdown of reactions that results in the

upscaled model ultimately returning to match the amount

of the reactive solute mass B from the fully resolved model

at later times.

6 Discussion

In this section, we examine more closely the shortcomings

of the LATERS Markov model at high Damköhler num-

bers. Since this method works well for lower Da when the

system is behaving closer to well-mixed, we focus here on

the Da ¼ 62:5 case.

We address three main questions regarding the cause of

the over-prediction of reactions for the Da ¼ 62:5 case.

First, in Sect. 6.1 we test whether or not the magnitude of

the fluctuation term in the volume averaged reaction rate

equation, C0
AC

0
B

� �

, is too small. This fluctuation term rep-

resents the amount of incomplete mixing in the system. If

C0
AC

0
B

� �

is not accounted for properly, it could explain why

the LATERS Markov model predicts too much reaction for

Da ¼ 62:5. Second, we determine how the upscaled model

is affected by grid resolution. The LATERS Markov model

requires discretizing the domain into two separate grids:

one to calculate the concentration fields of the reactive

solutes A and B and the other to calculate reactions. In the

previous section, we showed results for a concentration

grid comprised of square grid cells with edges of length

lx;C ¼ ly;C ¼ k and a reaction grid with square grid cells of

size lx;r ¼ lx;r ¼ Lcell. These grid resolutions were a natural

choice as they were based on the correlation length of the

permeability field, k, and the SMM cell length, Lcell, which

are physical length scales that characterize the system. In

Sect. 6.2, we examine the impact of these grid resolutions

on upscaled reactive transport. Finally, we explore the

effect of the mass reduction method used to account for

reaction within a reaction volume and its impact on the

system in Sect. 6.3.

6.1 Is the magnitude of fluctuation term
in the volume averaged reaction rate
equation too small?

In this section, we aim to identify whether or not the

magnitude of the fluctuation term, C0
AC

0
B

� �

, in the volume

Fig. 6 g

CAh i and
g

CBh i vs. x at

times ~t = 0.25, 1.25, and 2.5 for

Da ¼ 6:25. The overbar

indicates an average across the

reaction cells in the y-direction
and Hh i indicates a volume

average over a single reaction

cell
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averaged reaction rate equation given by Eq. 18 is too

small. This term should account for the slowdown in

reaction due to incomplete mixing. If the magnitude of

C0
AC

0
B

� �

is not sufficiently large, it might be responsible for

the over-prediction of reaction that was observed for the

Da ¼ 62:5 case. To begin, we run the LATERS Markov

model without the fluctuation term, i.e. with a volume

averaged reaction rate equation given by

rh i ¼ k CAh i CBh i; ð24Þ

which says that the reaction rate is simply based on the

average concentrations. The total mass of the reactive

solute B for the upscaled model run with Eq. 24, the

original upscaled model run with Eq.Eq. 18, and the fully

resolved model versus time are shown in Fig. 9. From this

Figure, it is observed that the results for the original

LATERS Markov model simulation and the new upscaled

simulation without the fluctuation term in the volume

averaged reaction rate equation are nearly identical. This

suggests that the approximation of the fluctuation term in

Eq. 18 has almost no effect on the upscaled system.

To further examine this, we explore what happens to the

system if the magnitude of the fluctuation term C0
AC

0
B

� �

is

increased. We run the LATERS Markov model with three

variations of Eq. 18 given by

rh i ¼ k CAh i CBh i þ a C0
AC

0
B

� �� 	

; ð25Þ

where a = 1.1, 2, and 5. By manually increasing the fluc-

tuation term by factors of 1.1, 2, and 5, we can quantify the

impact of larger values of C0
AC

0
B

� �

on the system.

Figure 10a shows the total mass in the domain versus

time for the fully resolved reactive random walk model and

the LATERS Markov model using Eq. 25 with a = 1, 1.1,

2, and 5. The case with a ¼ 1 is the original volume

averaged reaction rate equation given by Eq. 18 and the

results were shown previously in Sect. 5. It is observed that

increasing the fluctuation term by factors of a ¼ 1:1 and 2

has little effect on the results. For a ¼ 5, we observe a

slowdown of reactions between � ~t ¼ 4 � 10�2 and 2 � 10�1

relative to the other upscaled model results. During this

time frame, the predicted reaction rate of the LATERS

Markov model with a ¼ 5 is reduced and approaches the

fully resolved simulation results until approximately

~t ¼ 2 � 10�1. This slowdown in reactions is anticipated, as

the fluctuation term in Eq. 25 represents the reduction in

the amount of reaction due to incomplete mixing.

Fig. 7 g

CAh i and
g

CBh i vs. x at

times ~t = 0.25, 1.25, and 2.5 for

Da ¼ 62:5. The overbar

indicates an average across the

reaction cells in the vertical

direction and Hh i indicates a
volume average over a single

reaction cell
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However, after time ~t ¼ 2 � 10�1, the upscaled model with

a ¼ 5 increases its reaction rate and the simulation results

revert back towards the other upscaled model predictions

with a ¼ 1, 1.1, and 2. To determine the cause of this shift

from a slow down of reactions back to faster reactions, we

examine the terms in Eq. 25 more closely.

Figure 10b-d shows the sum over the domain of the

mean and fluctuation terms from Eq. 25, CAh i CBh i and

Fig. 8 The locations of the particles at times ~t = 2.5 for Da ¼ 0.625, 6.25, and 62.5 from the fully resolved model and LATERS Markov model

simulations
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a C0
AC

0
B

� �

, as well as the volume averaged reaction rate rh i
versus time for the LATERS Markov model simulations

with a ¼ 1, 1.1, 2, and 5. This Figure demonstrates that

with increased magnitude of C0
AC

0
B

� �

there is a decrease in

the reaction rate rh i at early times before ~t ¼ 2 � 10�1. This

decrease in rh i is particularly evident for a ¼ 5 and cor-

responds with the slowdown of reactions that was observed

in Fig. 10a. With this decreased reaction rate, the system

maintains more mass of the reactive solutes within the

interface region, as expected. This, however, results in an

increase of the mean term CAh i CBh i, which then causes rh i
to rise as well. This explains the increase in reaction rate

that was observed in Fig. 10d for the LATERS Markov

model with a ¼ 5 around the time ~t ¼ 10�1. Eventually

these mean and fluctuation terms reach a balance and we

observe that the values of rh i are in good agreement at late

times for all values of a considered in the upscaled model.

This corresponds to the observation in Fig. 10a that all of

the variations of the upscaled models are in agreement after

~t � 4 � 10�1.

By implementing the LATERS Markov model with a

modified volume averaged reaction rate equation given by

Eq. 25, it is found that the magnitude of the fluctuation

term C0
AC

0
B

� �

is not the source of the over-prediction of

reaction observed for Da ¼ 62:5 in Sect. 5. In fact, even

when a C0
AC

0
B

� �

is artificially increased, the slowdown in

reactions caused by this term results in more reactant mass

surviving at the interface. With more reactive solute mass

in interface region, rh i increases and reactions begin to

happen more quickly until these mean and fluctuation

terms reach a balance.

6.2 How does grid resolution impact reaction
rates?

In this section, we examine the role of grid resolution on

the results of the upscaled model. The calculation of

Eulerian reaction in the upscaled LATERS Markov model

depends on two separate grids: one to calculate the con-

centration field and the other to calculate reaction. In Sect.

5, we showed results for the upscaled model with a con-

centration grid comprised of cells of size lx;C ¼ lx;C ¼ k ¼
2 and a reaction grid with cells of size lx;r ¼ lx;r ¼ Lcell ¼
48. These grid resolutions based on the correlation length

of the permeability field (k) and the SMM cell length (Lcell)

were selected because they correspond to physical length

scales of the system. Here, we explore the impact of grid

resolution on our upscaled reactive transport model by

coarsening and refining the concentration and reaction

grids.

First, we examine the impact of concentration grid res-

olution on the system. Figure 11 shows the total mass of

the reactive solute B versus time for the LATERS Markov

model with the original grid (lx;C ¼ lx;C ¼ k ¼ 2), a fine

concentration grid resolution with lx;C ¼ lx;C ¼ 1, and a

coarse concentration grid resolution of lx;C ¼ lx;C ¼ 4k ¼
8. All three of these upscaled models have the same

reaction grid resolution of lx;r ¼ lx;r ¼ Lcell ¼ 48. From

Fig. 11, it is clear that the concentration grid resolution has

almost no impact on the results of the LATERS Markov

model. In Sect. 6.1, it was observed that the fluctuation

term C0
AC

0
B

� �

in Eq. 18 has little effect on the upscaled

system as a whole. Since the resolution of the concentra-

tion grid ultimately affects the calculation of this fluctua-

tion term, it is unsurprising that the concentration grid

resolution does not have a large impact on the results of the

upscaled model.

Next, we examine the impact of the reaction grid reso-

lution on the system. Fig. 12 shows the total mass of the

reactive solute B in the system versus time for our original

reaction grid resolution of lx;r ¼ lx;r ¼ Lcell ¼ 48, a coarse

grid resolution of lx;r ¼ lx;r ¼ 2Lcell ¼ 96, and a fine grid

resolution of lx;r ¼ lx;r ¼ 4k ¼ 8. The results of the

upscaled model with a coarser grid resolution show a

stronger over-prediction of reactions relative to the original

grid. It is clear from Fig. 12 that the fine grid resolution

case does a better job at the earlier times when the original

and coarse grid cases were previously over-predicting

Fig. 9 The total mass of B in the domain normalized by the total mass

of B in the domain at time = 0, i.e. fMB ¼ MB=MB;0 vs. time for the

LATERS Markov model with the original volume averaged reaction

rate rh i given by Eq. 18 and the volume averaged reaction rate

equation without the fluctuation term from Eq. 24. These different

equations of rh i tested the impact on the system when the fluctuation

term is removed. Time is non-dimensionalized by a dispersion time

scale defined as k2

D , where k is the correlation length of the natural log

of the permeability field and D is the constant dispersion coefficient
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reactions. This is because the fine grid resolution is better

able to capture the features of the incomplete mixing

between the reactive solutes A and B that the fluctuation

term C0
AC

0
B

� �

in Eq. 18 is meant to account for in the

LATERS Markov model framework. Figure 13 shows the

volume averaged concentrations in the reaction grid cells

averaged across the y-direction versus x at three different

points in time throughout the simulation for the LATERS

Markov model with the fine reaction grid resolution and the

fully resolved model. By comparing Figs 13 and 7, it is

clear that the fine reaction grid resolution does a much

better job of predicting the amount of reaction in the

interface between the reactive solutes A and B than with

the original reaction grid.

It should also be noted that the upscaled model results

appear to underpredict reactions at later times in Fig. 12.

Since this feature appears to be most prominent for the fine

grid resolution case, it is likely that this underprediction of

reaction at late times occurs because reactions have

depleted the solute particles within the size of the reaction

volume. Reaction can only occur when both A and B

particles exist within the same reaction grid cell, so the

depletion of particles over this grid cell area will limit

reactions that can occur on the Eulerian grid. Fine grid

resolutions will be affected by this more quickly than

coarser grid resolutions, and this discretization-based error

aligns with the observed underprediction of reaction at late

times in Fig. 12.

Fig. 10 (a) The total mass of B normalized by the total mass of B in

the domain at time = 0, i.e. fMB ¼ MB=MB;0 and the sum of (b)

CAh i CBh i, (c) the absolute value of ja C0
AC

0
B

� �

j, and (d) rh i values over
the whole domain versus time for the LATERS Markov model with

four different versions of the volume averaged reaction rate rh i given

by Eq. 25 with a ¼ 1, 1.1, 2, and 5. These modified rh i equations test
the impact on the system when the fluctuation term has an artificially

larger magnitude. Time is non-dimensionalized by a dispersion time

scale defined as k2

D , where k is the correlation length of the natural log

of the permeability field and D is the constant dispersion coefficient

1542 Stochastic Environmental Research and Risk Assessment (2021) 35:1529–1547

123



While it is found that the fine reaction grid resolution is

better able to capture the appropriate amount of reaction at

the times when the original and coarse reaction grid reso-

lutions overpredicted reactions, the purpose of this work is

to upscale reactive transport in this system. By moving

toward higher resolution grids, we are losing the compu-

tational benefits of the upscaled model. However, the fact

that this method more accurately captures the effects of

incomplete mixing under higher grid resolution implies

that transport in this system is being upscaled properly. The

overprediction of reaction by the LATERS Markov model

for higher Damköhler numbers must be a result of how

reactions are calculated, and this is not simply a matter of

increasing the magnitude of the upscaled reaction term as

shown in the previous section.

6.3 How should we account for reactions
within the upscaled model?

The results of Sects. 6.1 and 6.2 demonstrate that the cause

of the overprediction of reaction by the LATERS Markov

model must be from the upscaled reaction calculation and

not upscaled transport. Here, we examine how the reaction

calculation is implemented in the Lagrangian framework

and its effect on the system. The results shown in this work

thus far have been from simulations where upscaled reac-

tions are calculated using a random particle killing proce-

dure. In this method, a probability of reaction is calculated

based on rh i for each of the reactive solutes A and B within

every reaction grid cell at each time step. Then, particles

within each reaction grid cell are assigned a random

number n�Uð0; 1Þ and are selected for reaction if n is less

than the probability of reaction. This method therefore

treats all particles within a reaction cell as equally likely

for reaction. Since we are considering reactions of the form

Aþ B ! ;, if a particle reacts it is removed from the

system.

In the original LATERS Markov model developed by

Sund et al. (2017), upscaled reaction is implemented dif-

ferently with a particle mass reducing method. To account

for reaction at every time step in that work, Sund et al.

(2017) first calculates the amount of mass to be removed

from each reaction grid cell. Next, they determine the total

mass of the reactive solute within the reaction grid cell,

subtract the amount of mass that must be removed due to

reaction, and then distribute the remaining mass evenly

among the particles in the cell. A detailed description of

this procedure can be found in Sund et al. (2017).

Figure 14 shows the total mass of the reactive solute B

in the system versus time for the fully resolved model and

the LATERS Markov model with reactions calculated

using the random particle killing method and the mass

reducing method. It is observed in this Figure that the mass

Fig. 12 The total mass of B in the domain normalized by the total

mass of B in the domain at time = 0, i.e. fMB ¼ MB=MB;0 vs. time for

Da ¼ 62:5 with three different reaction grid resolutions. First, we

have the original case with a concentration grid resolution of lx;C ¼
lx;C ¼ k ¼ 2 and a reaction grid resolution of lx;r ¼ lx;r ¼ Lcell ¼ 48.

The results for this case were previously shown and discussed in Sect.

5. Second, we have a new fine grid case that has a reaction grid

resolution of lx;r ¼ lx;r ¼ 4k ¼ 8. Finally, we have a coarse grid case

with a reaction grid resolution of lx;r ¼ lx;r ¼ 2Lcell ¼ 96. Time is

non-dimensionalized by a dispersion time scale defined as k2

D , where k
is the correlation length of the natural log of the permeability field and

D is the constant dispersion coefficient

Fig. 11 The total mass of B in the domain normalized by the total

mass of B in the domain at time = 0, i.e. fMB ¼ MB=MB;0 vs. time for

Da ¼ 62:5 with three different concentration grid resolutions that all

have the same reaction grid resolution of lx;r ¼ lx;r ¼ Lcell ¼ 48. First,

the original case with a concentration grid resolution of

lx;C ¼ lx;C ¼ k ¼ 2, the results of which were previously shown and

discussed in Sect. 5. Second, a new fine grid case that has a

concentration grid resolution of lx;C ¼ lx;C ¼ 1. Finally, a coarse grid

case with a concentration grid resolution of lx;C ¼ lx;C ¼ 4k ¼ 8
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reducing method more strongly overpredicts the amount of

reaction in the system than the random particle killing

method. By distributing the remaining mass of the reactive

solute evenly among the particles within each grid cell

after reaction, the mass reducing method is causing an

increase in mixing. This increased mixing of the solute

mass results in more reactions, which is inconsistent with

the highly local reactions expected at high Da.

It is demonstrated in Fig. 14 that the method by which

reactions are executed has an effect on the system. In our

random particle killing method, particles are selected for

reaction randomly based on the probability of reaction in

the cell. In reality, the particles that should be the most

likely candidates for reaction are the A and B particles that

are nearest to each other. To test the impact of this, we run

the LATERS Markov model with a particle killing method

that preferentially removes nearby A and B particles. With

this reaction method, we first do a range search and

determine which AB particle pairs are closest to each other

in the reaction cell. Then, the probability of reaction is

calculated as usual using Eq. 23, the number of particles to

be removed for reaction is determined, and the closest AB

pairs are removed for reaction. Figure 14 shows that the

Fig. 13 g

CAh i and
g

CBh i vs. x at

times ~t = 0.25, 1.25, and 2.5 for

Da ¼ 62:5 for the fine grid case

shown in Fig. 12. Here, the

concentration grid has

resolution lx;C ¼ lx;C ¼ k ¼ 2

and the reaction grid has

resolution lx;r ¼ lx;r ¼ 4k ¼ 8.

The overbar indicates an

average over the reaction cells

in the y direction and Hh i
indicates a volume average over

a single reaction cell

Fig. 14 The total mass of B in the domain normalized by the total

mass of B in the domain at time = 0, i.e. fMB ¼ MB=MB;0 vs. time for

the fully resolved model and the LATERS Markov model with (i) the

particle killing method that has been used throughout this paper where

particles are selected for reaction randomly within the reaction cell,

(ii) the mass reducing method of Sund et al. (2017), and (iii) a particle

killing method where nearby A and B particles within the reaction cell

are selected for reaction
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nearby particle killing method does a much better job at

accounting for incomplete mixing compared to the random

particle killing method except at very late times. Table 1

shows the mean absolute error of fMB for each of the

LATERS Markov model reaction methods as compared to

the fully resolved model, defined by

� ¼
PNpts

i¼1 jlog10ðfMBFullyResolvedÞ � log10ðfMBLATERSÞj
Npts

:

ð26Þ

As shown in Table 1, the nearby particle killing method

significantly reduces the error at all early and intermediate

times up to approximately ~t ¼ 2:5. At late times when the

reactants have depleted in the interface, the random particle

killing method performs the best. While adding a particle

range search to the upscaled model does add some com-

putational cost, it is limited because it only requires sear-

ches within reaction cells and not globally. Overall, these

results indicate that this is an essential element that is

needed for the LATERS Markov model to better predict

effective reactive transport under high Damköhler

conditions.

7 Conclusions

We extend the LATERS Markov model (Sund et al. 2017)

to a more general non-uniform flow through an idealized

heterogeneous porous medium. It is found that the upscaled

model is able to predict effective reactive transport for

reactions of the form Aþ B ! ; very well for systems

with Da ¼ 0:625 and Da ¼ 6:25. While this method is able

to upscale reactive transport for systems with lower

Damköhler numbers, it did not do as well for high Da

systems where incomplete mixing is expected to have a

larger impact on the system. These results are consistent

with the findings of Battiato et al. (2009), Battiato and

Tartakovsky (2011), who concluded that reaction-domi-

nated systems (i.e. high Da) are not favorable for upscal-

ing. To identify the cause of the overprediction of reactions

by the LATERS Markov model in high Da systems, we

investigate the impact of the fluctuation term C0
AC

0
B

� �

in

the volume averaged reaction rate equation rh i, the reso-

lution of the concentration and reaction grids, and the

method of removing solute mass for reaction on the

upscaled model.

It is found that the upscaled term C0
AC

0
B

� �

has very little

impact on the results of the LATERS Markov model.

Simulations where the estimated C0
AC

0
B

� �

term is com-

pletely eliminated or manually increased in magnitude are

examined, and the results are not significantly affected in

either case.

After testing the LATERS Markov model on a variety of

concentration and reaction grid resolutions, it is found that

the reaction grid resolution has a significant impact on the

results of the upscaled model. With a fine reaction grid

resolution, we are able to better predict the amount of

reaction in the system than the coarser grid resolutions that

strongly overpredicted reactions. Since the upscaled model

with a fine grid reaction grid resolution is able to capture

the effects of incomplete mixing, this suggests that the

model is successfully upscaling transport. This supports the

results of Wright et al. (2019) where the downscaling

procedures to select particle locations within the upscaled

Spatial Markov model were able to predict the effective

mixing of conservative transport within an accept-

able margin of error. The cause of the overprediction of

reaction in high Da systems must then be due to how

reactions are calculated within the upscaled model.

To further investigate this point, we examine more

closely the random particle killing method which involves

calculating a probability of reaction within each reaction

volume based on the value of rh i. Particles within the

reaction volume are then assigned a uniform random

number n�Uð0; 1Þ, and removed if the probability of

reaction is greater than n. In the original LATERS Markov

model developed by Sund et al. (2017), the authors

accounted for reaction by calculating the total mass of the

reactive solute within the reaction volume, removing the

amount of mass designated for reaction, and then dis-

tributing the remaining mass evenly among all of the par-

ticles in the reaction volume. After implementing this

method in our framework, it is found that the overpredic-

tion of reaction is significantly stronger than it is for the

random particle killing method, since the method of Sund

Table 1 The mean absolute error of log10ðMBÞ for each of the LATERS Markov model reaction methods as defined by Eq. 26 averaged over the

specified times

Reaction Method � ðet ¼ 0 to 0:25Þ � ðet ¼ 0 to 1:25Þ � ðet ¼ 0 to 2:5Þ � ðet ¼ 0 to 3:5Þ

Random particle killing 0.0090 0.0114 0.0077 0.0080

Mass reducing 0.0133 0.0193 0.0131 0.0133

Nearby particle killing 0.0042 0.0036 0.0060 0.0102
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et al. (2017) causes increased mixing by uniformly dis-

tributing the mass among the particles in the cell; this

results in too much reaction over time because it falsely

assumes that particles can equally likely react with all

particles in the cell. Furthermore, the fact that these two

methods of mass removal yield such different results

demonstrates that the method by which mass is removed

during the reaction step is very important.

The two random particle killing methods described

above do not account for the fact that A and B particles that

are near each other should be more likely to react with one

another than those farther apart. We therefore test a nearby

particle killing method where AB particle pairs that are

closest to each other within the reaction cell are selected

for reaction. This method does a much better job at cor-

rectly predicting the amount of reaction in the system than

the random particle killing method. While adding a particle

range search to the reaction step does add some computa-

tional expense, the upscaled model was still more than 10

times faster than the fully resolved model. These results

demonstrate that it is crucial to account for the fact that

nearby particles are more likely to react in order to better

predict effective reactive transport in higher Da systems.

We conclude that upscaled reactive transport models

require more information on smaller scales in systems

where incomplete mixing is important. Local mixing

effects that are critical for correct predictions of chemical

reactions in such systems must be incorporated in the

upscaled reaction calculations. In the LATERS Markov

model, the transport and reaction processes are treated

separately. It was determined that even when transport was

accounted for properly, the method by which reactions are

implemented will have a significant impact on the outcome

of the system. In order to capture the effects of incomplete

mixing in these higher Da systems, A and B particles that

are near each other should be more likely to be selected for

reaction than those that are farther apart in the upscaled

model.

Our results open future pathways for the development

and implementation of the proposed methods to quantify

uncertainty related to reactive transport in heterogeneous

media, e.g., within multi-realization ensembles where

upscaling approaches can be used to considerably reduce

the computational costs. In this framework, our analysis

provides an evaluation of the approximation errors that can

be expected as a function of the Da number.
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